jueves, 11 de mayo de 2017

El CERN inaugura un nuevo acelerador de partículas


El Laboratorio Europeo de Física de Partículas (CERN) ha inaugurado hoy su nuevo acelerador de partículas lineal, llamado Linac 4, el más nuevo desde la puesta en marcha del gran colisionador de Hadrones (LHC). El Linac 4 proporcionará haces de partículas de mayor energía al complejo de aceleradores del CERN, lo que permitirá al LHC alcanzar una mayor luminosidad, medida del número de colisiones, a partir de 2021.

Tras un periodo de prueba, el Linac 4 se conectará al sistema de aceleradores del CERN durante la próxima parada larga de mantenimiento, en 2019-20. El Linac 4 sustituye el antiguo Linac 2, que entró en funcionamiento en 1978. Será el primer eslabón en la cadena de aceleradores del CERN, proporcionando haces de protones a un amplio abanico de experimentos. España, Estado miembro del CERN, ha participado en la construcción del nuevo acelerador inaugurado hoy.

“Estamos encantados de celebrar este logro. El Linac 4 es un moderno inyector, y el primer elemento clave para nuestro ambicioso programa de mejora que conduce hasta el LHC de Alta Luminosidad. Esta fase de alta luminosidad incrementará considerablemente el potencial de los experimentos del LHC para descubrir nueva física y medir las propiedades del bosón de Higgs con mayor detalle”, dijo la directora general del CERN, Fabiola Gianotti.

“Este es un logro no solo para el CERN, sino para los socios de los países que han contribuido al diseño y la construcción de esta nueva máquina”, aseguró el director de Aceleradores y Tecnología del CERN, Frédérick Bordry. “Hoy celebramos y agradecemos la amplia colaboración internacional que ha dirigido este proyecto, demostrando una vez más lo que se puede conseguir uniendo el esfuerzo de muchas naciones”.

El acelerador lineal (linac, en inglés) es el primer elemento esencial en una cadena de aceleradores de partículas. En él, las partículas producidas reciben la aceleración inicial; la densidad e intensidad de los haces de partículas se establece también en el linac. El Linac 4 es una máquina de casi 90 metros de largo ubicada 12 metros bajo el suelo. Su construcción llevó casi una década.

El Linac 4 enviará iones negativos de hidrógeno, que consisten en un átomo de hidrógeno con dos electrones, al Proton Synchrotron Booster (PSB) del CERN, que acelera después los iones negativos quitando los electrones. El Linac 4 lleva el haz hasta los 160 MeV de energía, más de tres veces la energía alcanzada por su predecesor. El aumento de energía, junto con el uso de iones de hidrógeno, permitirá doblar la intensidad del haz proporcionado al LHC, lo que contribuirá al incremento de su luminosidad.

La luminosidad es un parámetro que indica el número de partículas que chocan en un determinado periodo de tiempo. Se prevé que la luminosidad máxima del LHC se incremente en un factor 5 en 2025, lo que permitirá a los experimentos acumular 10 veces más datos en el periodo 2025-2035 que en el periodo anterior. El LHC de Alta Luminosidad proporcionará así medidas más precisas de las partículas elementales que las obtenidas actualmente, además de ofrecer la posibilidad de observar procesos inusuales que suceden fuera del rango de sensibilidad actual del LHnac 

CPAN/CERN.

Posibles señales de Nueva Física encontradas en un nuevo análisis conjunto de datos de LHCb y otros experimentos.


Un equipo internacional de investigación ha presentado un análisis global de un conjunto de observables relacionados con un tipo de desintegración rara de mesones B medida en distintos experimentos: principalmente LHCb, Belle y también resultados preliminares de ATLAS y CMS.

Los resultados del análisis que incluye 30 observables (muchos de ellos propuestos por este grupo) muestra que el Modelo Estándar está desfavorecido como solución para explicar todos estos observables a un nivel de significancia de 5 desviaciones estándar (“5 sigmas”) con respecto a la solución de Nueva Física. En búsquedas directas, una discrepancia de 5 sigmas se denomina convencionalmente descubrimiento. Si sólo se incluyen observables que testean universalidad del sabor leptónico, se encuentra evidencia de no universalidad en un rango entre 3 y 4 sigmas.

El equipo de investigadores está compuesto por Sebastien Descotes-Genon, director del Laboratoire de Physique Theorique (LPT, CNRS, Orsay ); Joaquim Matias, profesor de la Universitat Autònoma de Barcelona (UAB) y investigador del Institut de Física d’Altes Energies (IFAE); Javier Virto, investigador postdoctoral en el Albert Einstein Center for Fundamental Physics (University of Bern); Lars Hofer, investigador postdoctoral del Departament FQA, ICC, Universitat de Barcelona (UB); Andreas Crivellin, investigador postdoctoral at Paul Scherrer Institut (PSI, Villingen, Switzerland); y Bernat Capdevila, estudiante de doctorado at UAB y IFAE.

Las desintegraciones raras están suprimidas en el Modelo Estándar (ME) y, en consecuencia son un banco de pruebas excelente para buscar Nueva Física que puede competir con el ME en estas desintegraciones. Ejemplos de ellas son la desintegración de un mesón B en una partícula de spin-1 llamada K* y dos muones, o un mesón Bs en dos muones.

Nueva Física es una forma genérica de referirse a una teoría más fundamental que reemplazará el ME. Sabemos que el ME no puede explicar distintas observaciones importantes como, por ejemplo, la existencia de materia oscura o la asimetría entre materia anti-materia en el universo.

Un observable es una cantidad física que puede ser medida y comparada con una predicción teórica. Para el presente análisis global 30 observables han sido calculados y medidos en uno o más de los cuatro experimentos mencionados anteriormente.

El primer paso importante se dio en 2005, en un trabajo donde se propuso una nueva clase de observables que iban más allá de los análisis tradicionales, y con una gran potencialidad para observar Nueva Física. Más tarde, en 2012 y 2013, el grupo de investigadores presentó un conjunto completo de esta clase de observables. En 2013, LHCb decidió llevar a cabo la medida por primera vez de estos observables y encontró una discrepancia de 3.7 sigmas con el ME. LHCb confirmó la tensión en 2015 con más datos, y , un año después , Belle confirmó también la tensión con un resultado en muy buen acuerdo con LHCb. Hace pocas semanas, en la conferencia de Moriond, ATLAS y CMS presentaron resultados muy preliminares, por un lado ATLAS confirmaba la anomalía y CMS resultaba ser más consistente con el ME. Mientras tanto, se han medido una larga lista de otras desviaciones con respecto al ME.

Un tipo especial de estas desviaciones proviene de dos observables llamados RK y RK*. Estos son cocientes de la desintegración de un mesón B-(B0) en un Kaón (o K*) y en un muon anti-muon o pareja electrón positrón. Se diseñaron para testear una propiedad del ME, llamada universalidad del sabor leptónico. Estos son observables extremamente limpios que contienen información importante. Primero, apuntan hacia indicios que la naturaleza podría violar universalidad del sabor leptónico y segundo, bajo esta hipótesis, las desviaciones observadas en el resto de observables son totalmente consistentes con ellos.

La universalidad de sabor leptónico es una propiedad del Modelo Estándar que trata a los leptones de forma democrática a nivel de interacciones (con diferencias en las desintegraciones mencionadas más arriba proveniente de cocientes de masas de leptones). Esta democracia implica que uno debería esperar que las medidas de ambos observables RK and RK* fueran uno, pero en cambio, las medidas de ambos se encontraron alrededor de 0.75.

Estos resultados abren un nuevo campo de investigación, y LHCb está ahora centrado en producir y medir una larga lista de este tipo de observables capaz de testear universalidad para intentar confirmar lo observado en RK y RK*. Algunos de estos nuevos observables podrían ser capaces de distinguir entre distintas posibilidades de Nueva Física.

Una posible solución a esta discrepancia con las predicciones del Modelo Estándar podría ser que estuviéramos viendo las primeras huellas de una nueva partícula, y dos posibles candidatos serían o bien un bosón de gauge Z’ (similar a la conocida partícula Z pero con diferentes acoplamientos a las partículas) o un leptoquark. Esto requeriría una explicación en término de modelos. O bien modelos que contengan una partícula Z’ con acoplamientos muy específicos (en particular, acoplamientos predominantemente a muones y no a electrones) o modelos que incluyen leptoquarks. Estos son una clase genérica de partículas presentes en modelos de gran unificación y que permiten interaccionar a leptones y quarks y que llevan carga de color y electro débil. 

UAB.

La corteza terrestre pudo haber llovidó del cielo.



Es posible que la corteza terrestre haya "llovidó del cielo" y muchos de sus componentes químicos no fueron producidos por erupciones volcánicas, sino que pudieron ser condensados por la atmósfera tras la colisión con un planeta de las dimensiones de Marte, hace 4.500 millones de años

Entonces la Tierra era muy joven y el impacto tuvo dimensiones catastróficas y transformadoras según la reconstrucción publicada en la revista Earth and Planetary Science Letters

La investigación estuvo dirigida en Canadá por un grupo de científicos de la Universidad McGill de Montreal, coordinado por los geólogos Don Baker y Kassandra Sofonio

Los resultados podrían ayudar también en la búsqueda de planetas externos al Sistema Solar con capacidad de albergar vida

Según las teorías tradicionales los volcanes serían la fuente principal de los ingredientes de la corteza terrestre primitiva, compuesta en un 90 por ciento por minerales ricos en sílice, como cuarzo y feldespato

La reconstrucción hecha por los canadienses indicó que, tras la colisión con el protoplaneta, la atmósfera terrestre estaba formada por vapores hirvientes con capacidad de disolver las rocas más superficiales, "más o menos como el azúcar se disuelve en el café", explicó Baker

"Estos minerales disueltos subieron hacia la atmósfera y se enfriaron, los materiales ricos en silicio se separaron y luego volvieron a caer sobre la Tierra en forma de lluvia", amplió

Los investigadores simularon el proceso completo en un laboratorio, calentando a 1.550 grados centígrados una mezcla de agua y materiales a base de sílice tomados del suelo.Los polvos así obtenidos, unidos al agua, fueron colocados en el interior de cápsulas de oro y paladio, puestas después en un contenedor a presión calentado a 727 grados centígrados para simular las condiciones extremas presentes en los orígenes de la Tierra, un millón de años después del impacto.

Según los geólogos la cadena de eventos reconstruida en laboratorio determinó que sobre la Tierra, en un tiempo más bien breve, se registró la aparición de condiciones tales para favorecer el origen de la vida. 

ANSA

NASA descubre un planeta helado similar a la Tierra



La NASA ha anunciado el hallazgo de un planeta frío que contribuirá a que los científicos comprendan los tipos de sistemas planetarios que existen más allá de los nuestros. Este planeta helado con la masa similar a la de nuestro planeta Tierra, el cual orbita unau estrella a la misma distancia que orbitamos nuestro Sol, según explicó la agencia. 

Sin embargo, aclaró que “El planeta es probablemente demasiado frío para ser habitable para la vida tal como la conocemos”, pero no descartan la posibilidad.

El planeta se ha bautizado ‘OGLE-2016-BLG-1195Lb’ el cual ayudará a “los científicos en su búsqueda para averiguar la distribución de los planetas en nuestra galaxia” señaló la NASA.

Este planeta es el de menor masa que se ha encontrado bajo la técnica del ‘microlente’, la cual ha facilitado a realizar diversos descubrimientos, incluso a detectar los exoplanetas las lejanos de la Tierra.

Descubren una supertierra que podría albergar vida




Un equipo internacional de astrónomos ha descubierto una supertierra, un planeta rocoso y templado que orbita a una estrella enana roja y que, por sus características iniciales, podría contener agua, lo que le convierte en un muy buen candidato para albergar vida.

Como publica la revista Nature, el exoplaneta, bautizado como LHS 1140b, se encuentra fuera del Sistema Solar, y orbita en torno a una estrella tipo M, una estrella enana roja "algo más pequeña que nuestro Sol y menos luminosa pero de las más abundantes de la galaxia", explicó a Efe el investigador del Instituto de Astrofísica de Canarias (archipiélago español en el Atlántico) y coautor del trabajo, Felipe Murgas. 

La supertierra y su estrella están en la constelación de Cetus (el monstruo marino), a 39 años luz de distancia de nuestro Sol, "dentro del vecindario del Sistema Solar", apunta Murgas.

"Es el exoplaneta más interesante que he visto en la última década" y el "objetivo perfecto para llevar a cabo una de las misiones más grandes de la ciencia: buscar evidencias de vida más allá de la Tierra", afirma el autor principal del trabajo e investigador del Centro de Astrofísica Harvard-Smithsonian (Cambridge, EE.UU.), Jason Dittmann. 

De hecho, fueron los instrumentos de MEarth-South los que permitieron medir el radio del planeta y, gracias al espectógrafo HARPS instalado en el Observatorio ESO La Silla (Chile), se logró medir la masa del planeta, el periodo orbital y la densidad de la supertierra. 

De acuerdo con estas mediciones, LHS 1140b tiene un radio 1,4 veces el de la Tierra y su masa es 6,6 veces la de nuestro planeta.

Pero lo más importante son sus condiciones, particularmente favorables para albergar vida, y es que, por su cercanía a la estrella que orbita, LHS 1140b está dentro de lo que se llama "zona habitable", es decir, que la temperatura de su superficie permite la existencia de agua en los tres estados posibles: líquido, sólido y gaseoso. 

"Que haya agua o no dependerá de la composición atmosférica del planeta y de otros factores, como por ejemplo la presencia de campos magnéticos en el planeta", pero lo más importante es que el planeta "cumple los requisitos para albergar agua", que es la definición de zona de habitabilidad, subraya Murgas. 

No obstante, para que haya vida tal y como la conocemos, además de agua, un planeta necesita retener una atmósfera. Sobre este punto, los investigadores creen que, por su gran tamaño, hace millones de años el exoplaneta podría haber tenido un océano de magma en su superficie, lo que podría haber proporcionado vapor a la atmósfera. 

En cuanto a la edad del sistema descubierto, los autores proponen que LHS 1140b pudo formarse de una manera similar a la Tierra y calculan que su estrella tiene al menos 5.000 millones de años, la misma edad que el Sol. 

Aunque "este punto aún no está claro porque las estrellas tipo M pueden extender su reacción nuclear -combustión- durante muchos más años que astros como el Sol, de modo que podría tratarse de un sistema bastante viejo", apunta Murgas.

Lo cierto es que falta mucho por averiguar y por estudiar de esta supertierra, que está "al límite de lo que se puede observar con los instrumentos actuales", pero lo importante es que es un planeta "potencialmente interesante" y un "muy buen candidato" buscar vida. 

Su hallazgo, explica el investigador del IAC, es el paso previo a la investigación astronómica de las próximas décadas, la que liderarán los telescopios de nueva generación como el James Webb o el Telescopio Europeo Extremadamente Grande (E-ELT), que se instalará en Chile y que "en un par de años podrán estudiar este sistema y tratar de detectar su atmósfera" entre otros aspectos. 

EFE